

超広帯域アンテナと新規を開拓の可能性について

アルモテック株式会社

2022.12.14

- ・アルモテックとは
- ・ 超広帯域アンテナとは
- ・想定される顧客とは

- ・アルモテックとは
- 超広帯域アンテナとは
- 想定される顧客とは

https://www.arumotech.co.jp

会社案内

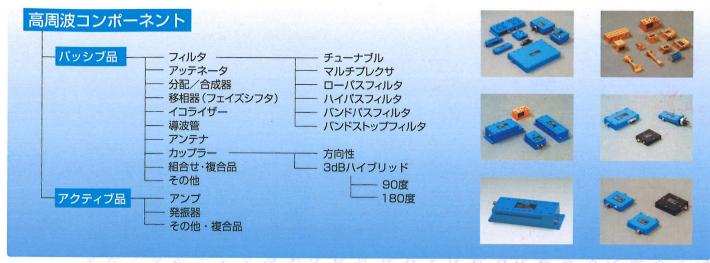
·設 立 : 1995年1月19日

·本社·工場 : 京都市中京区三坊西洞院町572

•横浜営業所 : 横浜市港北区新横浜3-6-5

・業務内容 : マイクロ波・ミリ波帯の機器及び部品の開発・設計・製造及び販売

·ISO9001 : 2015年度版 認証取得済



【アルモテック製品ラインナップ

高周波ソリューションのアルモテックは「自社開発・設計・製作」 「フレキシビリティのある対応」「スピード化」のトータルでお応えします。

- ・アルモテックとは
- ・ 超広帯域アンテナとは
- 想定される顧客とは

- ・電波を送信/受信するにはアンテナが必要。
- ・目標物の検出精度を良くするには分解能 を上げる必要がある。

(分解能を良くするには、周波数の帯域幅を広く取る・アンテナ素子数を増やす等)

例

飛行機パイロット HPより

放射器と反射板 十回転台

ウキペディア HPより

Bing HPより

フェーズドアレーアンテナ

超広帯域アンテナの特徴と対比

既存 既存 の開発品

	MIT.	M 12	
	QRFH (クアッドリッジフィードホーン)	SINUOUSアンテナ (背面放射吸収型)	SINUOUSアンテナ (背面放射 <mark>反射</mark> 型)
外観		断面 放射面 吸収体	断面 放射面 反射板
偏波		直交2偏波 (水平・垂直)	
サイズ	ϕ 6 cm, H 10 cm	ϕ 8 cm, H 5 cm	ϕ 17 cm, H 5 cm
周波数範囲	4~40 GHz	2~24 GHz	1~40 GHz
上限/下限 周波数	10倍	12倍	40倍
背面感度	当初より遮蔽	吸収体で遮蔽するため、 その雑音温度がオフセットとして混 入、前方の微弱な雑音温度への感度 が鈍る。	反射板と すり鉢状の電磁放射面を 設け反射板までの距離と波長の比を維持。 →直接受信波と対峙する反射波を強め合わせることで高感度化 。
ビーム幅 (@6dB)	高周波数で狭くなること不可避 (6dBで60°@6 GHz~ 9°@40 GHz)	周波数によらず一定(6dBで100°)	周波数によらず一定(6dBで110°) ※シミュレーション解を発見

資料提供: JAXA殿

上限/下限周波数「40倍」の超広帯域特性とビーム幅一定(観測視野一定)を 両立させるアンテナは世界初。

超広帯域アンテナの主要諸元

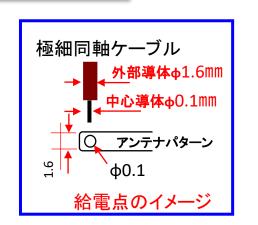
項目	仕様	
形式	反射板装荷型 SINUOUSアンテナ	
周波数帯域	1 ~ 40 GHz	
偏波	直交2偏波 (水平・垂直偏波)	
ビーム幅 (6 dB)	全周波数範囲で110°以上 ∵フェーズドアレイアンテナとして必要ステアリング範囲を 確保、この特性はQRFH(→前頁)では達成不能。	
VSWR	3 以下 (RL 6 dB 以下)	

低周波 側面(断面)図

Conical Sinuous Antenna 電磁放射面 (コーン)

「GFRPなど)

「D財板(アルミニウム)


セミリジッドケーブル
Carlisle UT-034-95

上面図

各周波数の励振位置において、**直接受信波と対峙する反射波が強め合うように、 電磁放射面をすり鉢状に**して反射板までの距離と波長の比を維持。

製作までの振り返り

- ・シミュレーションを繰り返してのアンテナパターンの追い込み
- ・アンテナ素材の選定及び基板業者の選出。
- ・アンテナを円錐にするための組立技術の確立
- ・バラン(インピーダンス変換器)の製作
- ・極細同軸ケーブルを使ってのアンテナパターンとバランの接続
- ・性能評価時の不具合箇所の切り分け

強度・製作面から 1.6に変更

超広帯域アンテナの概略仕様

周波数範囲:1.0GHz~40GHz

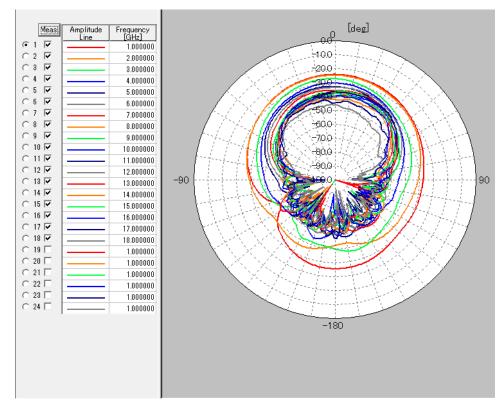
6dBビーム幅:110°以上

VSWR : 1.92以下

受信偏波 :水平・垂直の2波受信

外形寸法 : φ190mm

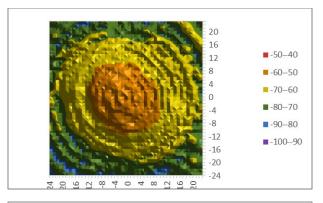
高さ:61mm

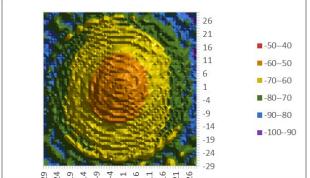

重量:約450g(バラン込み)

参考用アンテナパターン (1~18GHz)

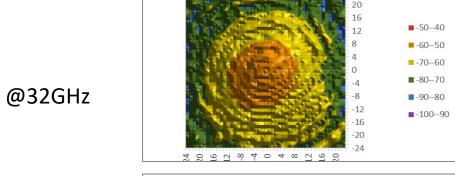
広帯域アンテナ E面

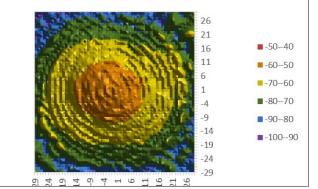
Meas. Amplitude Frequency [GHz] C 2 ₹ :10.0 O 3 ▼ -20.0 3.000000 4.000000 C 5 ₹ 5.000000 O 6 🔽 6.000000 O 7 ▼ 7.000000 C 8 ₹ 8.000000 C 9 ▼ 9.000000 C 10 ₹ 10.000000 ○ 11 🗷 11.000000 O 12 ₹ 12.000000 C 13 🔽 13,000000 O 14 ▼ 14.000000 C 15 ₹ 15.000000 O 16 🔽 16.000000 O 17 🔽 17.000000 C 18 ▼ 18.000000 O 19 □ 1.000000 C 20 □ 1.000000 C 21 E 1.000000 C 22 □ 1.000000 C 23 □ 1.000000 C 24 □ 1.000000 -180


広帯域アンテナ H面



周波数に依らず波形が凡そ一定


参考用アンテナパターン (30~40GHz)

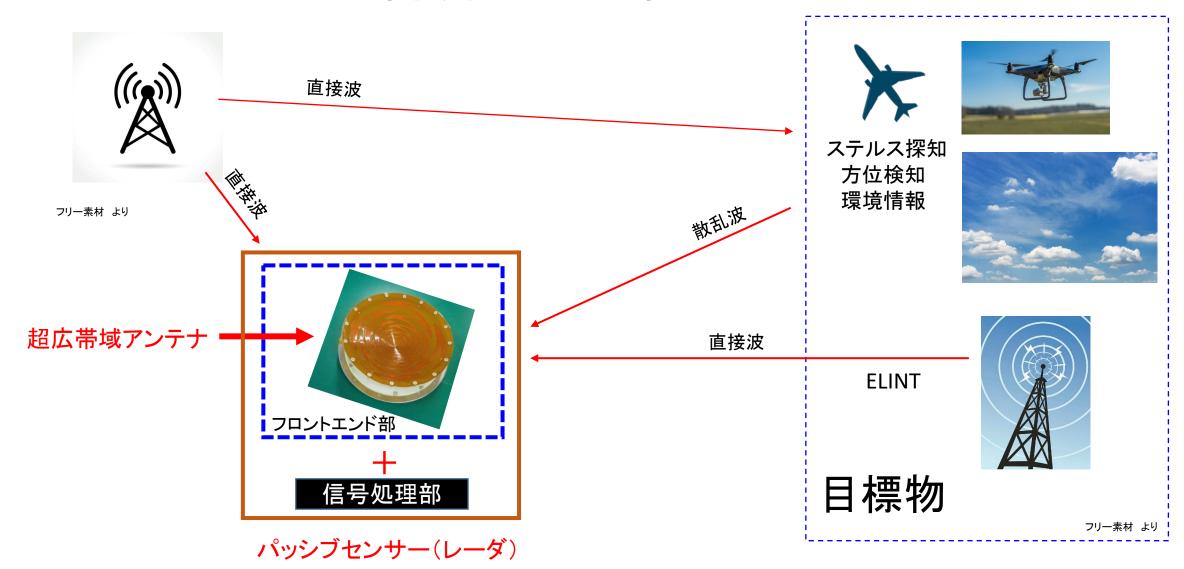

広帯域アンテナ E面

広帯域アンテナ H面

@40GHz

周波数に依らず波形が凡そ一定

- ・アルモテックとは
- 超広帯域アンテナとは
- ・想定される顧客とは



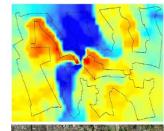
超広帯域アンテナを使っての考えられるパッシブセンサー(レーダ)の利点

- ・センサー自らが電波を発しないため、空中にある電波が対象物に 当たった反射波を利用して、位置特定や電波干渉の心配が無いため、 都市部・山間部・海上での利用が可能。
- ■電波を出さないのため、電波局申請が不要。
- センサーをネットワーク化すると広範囲なエリアがカバー出来る。
- ・従来の装置に対して小型・軽量が可能。

計測イメージ図

装置が小型軽量となるため機動性に良く、ドローン(軽飛行機等)などに装着してタイムリーにかつ広範囲にセンシングが行える。

例えば、


•定点観測用 :電波を使う為気象の影響を受け難く・24時間監視が可能。

• 建設 • 土木 • 行政関係: 受信波で地殻変異等の24時間モニタリング。

•一次産業関係 : 平野部/山間部での農作物の成育調査のスマート農業。

• 建設 • 土木 • 気象関係: 陸上や海上での風向、温度等の環境情報収集。

•通信•防衛関係 : ELINTのような秘匿性の高い電波の収集。

農林水産省HPより

マイナビ HPより

ウインドプロファイラー 気象庁HPより

フリー素材

展示スペースに試作機を用意致しました。

ご清聴ありがとうございました。